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A Non-Linear Canonical Transformation for the
Dynamical Jahn-Teller Problem in Cubi¢c Symmetry
(Optical Resonance Effeet)
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.

U. GreEvsMmCurL!) and M. WaGNER

One of the two fundamental dynamical Jahn-Teller problems in point-symmetry sur-
rounding, the T-t problem, is handled by means of a non-linear canonical transformation.
The latter is established by analogy to the doubly degenerate problem. where the correspond-
ing tranformation is shown to be quasi-exact. Combinatorial as well as serics expansion
methods are presented. Pronounced resonance effects are found for the zero. one, and higher
phonon lines. This reflects the fact that the effective sphtting of the degeneracy in the
high energy system may be of the same order of magnitude as the elcmentary excitation
in the low energy one.

Eines der beiden fundamentalen dynamischen Jahn-Teller-Probleme in Punkt-Symme-
trie-Umgebung, das sogenannte I t-Problem. wird mit Hilfe ciner nichtlinearen kanonischen
Transformation behandelt. Zur Aufstellung der letzteren wird die Analogie zum zweifach
entarteten Problem benutzt, wo gezeigt werden kann, daB die entsprechende Transforma-
tion quasi-exakt ist. Es werden sowohl kombinatorische als auch Reihenentwicklungs-
methoden dargelegt. Ausgepragte Resonanzeffekte ergeben sich fiir die Null-, Kin-, und
Mehr-Phononen-Llinien. Dies reflektiert die Tatsache, dal die effektive Aufspaltung der
Entartung im hochenergetischen System von derselben GroBenordnung sein kann wie die
Elementaranregung im niederenergetischen,

1. Introduction

After the formulation of the Jahn-Teller (.J. T.) thcorem on the configurational
stability of molecules [1] (“static J. T. effect™, ~J.T. distortion™). it has been
only recently that there has been a growing interest for the fundamental problem
of the coupling between degenerate high- and low-energy systems (“dynamical
JUT effect™). For a good review we refer to the articles of Longuet-Higgins [2].
Sturge [3]. and Ham [4].

In this study we discuss one of the two fundamental pure J.'T. situations which
may appear in a point-symmetry configuration. It consists of a threefold
degenerate “fast” svstem (excitonic high-frequency oscillator) which interacts
with a threefold degenerate “slow™ system (low-frequency oscillator). We call
this the T—t svstem. For more details about the characterization of this svstem
we refer to two preceding papers of one of us (M. W.) [5, 6]. Since the cor-
responding non-degenerate coupling problem can be completely diagonalized
by a non-linear canonical transformation [6]. and since in the case of the coupled
twofold degeneracies (J.T. case K-e) a quasi-exact non-linear canonical trans-
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formation can also be found, as shown in a preceding paper [7]. we are confident
to have some success with a similar transformation for the triply degenerate
coupling case. This will be the aim of the present investigation.

We define our system by the Hamiltonian [5. 6] (7 — 1)

H(v.X) = H(x) ~ H,(X) + % V(r. X). (1.1)

where the Hamiltonian for the fast (two-level) system is given by

3
H, = w, > a a,. (1.2)
11
and for the slow system by
3
]f\ S n)l ‘Z b’ b} . (I : ]
71

The interaction operator is of the form [5. 6]

3
Vo= X (axap. +acai.y) (be o
k=1

+ b2 (1.4)

where we have omitted all terms with a, a;.a, a, (double creation and anni-
hilation). The form of the interaction follows from group-theoretical argumen-
tation in a cubic system [5, 6]. The total Hamiltonian is chosen in a form of
utmost simplicity. which however still incorporates the “dynamical resonance
effect”’. which is expected to appear between the effective splitting of the
excited electronic state and the elementary excitation in the low-frequency
svstem. We continually assume
(g )y, *

which allows us the kind of “Condon approximation™ incorporated in the
choice of the Hamiltonian (1.1). From this we have an electronic subspace of
the total Hilbert space, the eigenstates of which are fixed in their analytic form.
and only originally degenerate states can be mixed via the interaction. The
total .JJ.T. wave functions for the excited electronic state “"b™" read

3
(b - (h) (b), v -
W (e, X) = X (@) dENX) (1.5a)
i1
where 7 labels the degeneracy of the fast system and m the quantum number of
the slow system. For the electronic ground state "a’” we have

P, X) = et () @,7(X) (1.5b)

The orthonormality and closure relations of the wavefunctions of the slow
svstem read [35]
- [} ¥ b o >
,}_ /q’)f :;:(4\) ¢'f'n:'(‘\)/ o bm m' s (]'ha)
SO (X)) (D (X)) = 0B (X - X)L (1.6b)

—
i

We describe the dyvnamical behaviour of our system by its response to an
electromagnetic stimulans from outside. This response is given as the optical
absorption cross-section [8]

alm) = Ko Ly(o). (1.7)
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where

Ihn((") :

| L
e (- A'n?‘)_] |

/ NEY
S Y exp ( — ;‘::T) (e, X)) Py (P, X)) 12

) (mll-) . m}:n —m) (188]

m

h ]

and A is a constant containing the static and dvnamic dielectric constants and
the local electric field. In our context A is of no relevance. The external light
field is assumed to be coupled to the electronic system only, whence we choose

the following form for the dipole operator (polarization in x,-direction):
Py — ex; = pla;, + a;). (1.9)
wi* and o)) are the energies of the initial and final states. respectively. \We may

put ! = 0.
Limiting ourselves to 7" = 0 we arrive at

Ihu(“”] — P2 Golf”} g I:ISI))
T-0
where
Gole) = 3 [0 (ay + ap) [P0 12 8 (o0 — e)) (1.10)

i

2. Non-Linear Canonical Transformation

We perform the unitary transformation
~ . l . - - .
H -~ H -+ [H S|+ 57 [[H.S].N] . (2.1)

P e SY

where N is anti-Hermitian, S* -- —S8, and in close analogy with the non-
degenerate [6] and the E-e cases [9] we choose (4 == (/o)) };(:f:})
3
S = ;.!21 (@i ap.y +ai ya) (b2 — b 2), (2.2)

where a evelic notation has been used. / - 3 = [. The transformed Hamiltonian

has the form
3 3

H = [og — 20 (£ — q(x))] X a; a; 1o 3 b by — Hyy (2.3)
=1 [

where y(») very nearly is a constant, 5 ~ O(4%) for 4 — 0. From the E-e case
we know that the remaining non-diagonal term H,, is of order 2% for 4 > 0,
and cqually H,q — 0 for 271 [7]. By analogy we tacitly assume here also
that /7,4 does not play any decisive role. Hence we will neglect it in the following.
The transformed J.T. wave functions then are given by
N 3 (b;')mj
. X i
|f> o ?,U(:-J d’m,m,m, = a; /1

S0 i—1.2,3. (2.4)
i1 | my!

This wave function later will be denoted by |a; m, m, m,>. For the absorption
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function (see. equation (1.10)) we then arrive at

B X M=y o iy M) -
(iglen) = {E‘ > [ fle “ay e ? !II)!z}
Co b0 g g,y = 0)

o -~ N 4 o N i Y 5 =

S(m — g+ 2x (4 — 1) — oy (my + my - ng)) . (2.5)

In this approximation we expect equidistant lines as in the non.J.T. case.
The delta functions are at the positions o, — mg — 2x (A — ) — o, m with
m o= 0.1.2, ... . From (2.5) it is seen that in our further procedure we have
to concentrate on the calculation of the matrix elements (fle ~aj e 0,
In calculating these exactly we use two equivalent approaches. The first one
is outlined in Section 3: After applyving e -~ onto the vacuum state. we expand
e Y in a power series in 8. By introducing complete orthonormal systems the
problem is reduced to the calculation of three combinatorial problems and the
matrix clements Jm| (b, — b7)7 105, No analytically closed form, however, is
found for these combinatorial problems.

We avoid the difficulties of solving these combinatorial problems in our
second approach. By means of a recurrence formula (ef. Section 4) we find an
exact expression for a;. which is suitable to calculate the zero-. one-. etc.
phonon lines.

3. First Approach in Caleulating the Transformed Optical Absorption Function

After expanding e ¥ in (2.5) in a power series in N and introducing the closure
relation for the wave funetions of the fast svstem we arrive at

4 &0 o es x ( l)p 3 3 3
Golw) = 5 2 X 2|12 5 2 AR
o by =0my=0mn,=0 p=0 P Jooljy=1 Ip-1=1
p ¢ . y v e .
s (bmlmlmll 'SI h 'S,i,;', ‘\j'.:', e ‘\Jp 1 _r'qbo) ) [ .. ) . [-Sl}

p-factors
where the elements of the matrix S, are
0 by — by by — b,
N o flap Saiyy = (4) by — by 0 by — by |- (3.2)
by — by b — by 0
A single term in (3.1) has p factors 8, and is characterized by the set (v). vy 1)
Its form is
(Z) e ns Sy B |0 Syl Bre |00 Cmgl B |0 (3.3)
where
B, —~ b, — b : i = 1.2.3. (3.4)
B, occurs p,-times and
R I e A (3.9)
The total number Z (v, vo. ;) of existing terms belonging to a certain set
(#,. va. ¥4) is deseribed by three combinatorial problems (for i - 1.2.3). We
obtain

3 x

(— 1)

P ¥pvy = p

- x
G~ > > x50 TUY T Zon
Pl omy mg iy =0 p=Q P ribrg bry=0
2
Sy B0y gl Bie 0y Cing) B0y 8 (0L ) . (3.6)
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Fig. 1. Ilustration for the combinatorial problem of the Jahn- (a,*a;) 7 la;*a;)
Teller system T-t (explanation see text) 0
3\\:,///
fa,+a;)

By introducing Z, in the expression of the optical absorption function the
(p — 1) sums over j are reduced to only three sums over »; the latter ones are
actually only two independent sums because of (3.5).

To solve the combinatorial problems it is convenicnt to express them as a
circle (Fig. 1) (see [3]). Z(vy. vy, ¥5) is equal to the number of paths starting in
point ¢ (i = 1, 2. 3) and ending in point 1 and intersecting section 1 »,-times,
section 2 y,-times, section 3 r;-times.

In particular for ¢ = 1 we write Z,(v,. vy v3) = X(1,. ¥5. 13), where X is ob-
tained by means of the recurrence formula

2iw,
Xy, va.v9) = 2 [ X (0, — 20,0901y —2) - X (0y — 20,0 — 2.0)] +
-0
20 5(r, 1)
2 3 X(n—1—=-2ev,—1,v—-1) (3.7)
=0

with the boundary condition
X(0.0.0) = 1. (3.8)

(For the derivation of this formula see [5].) Similarly for ¢ = 2, writing
Zo(vy. 1. 13) = P(r,, vo. 1), we have the recurrence formula (see [5])
Py, vg, v5) = Plry.vyg — 20wg) +Q(vy — 1wy — 1 1y)
Qv e vy — 1), (3.9)

where Q(r,. vy, v3) is the number of closed paths starting and ending in point 2.
IF'or @ follows a recurrence formula which has a similar structure as (3.7). The
boundary conditions are now

PO. 0, 1) = P(1.1,0) = 1. Q0. 0,0) =1. (3.10)
For the case 7 = 3, writing Zs(v,. vs. v5) = U(r). v5. v3). we have
U veovy) = Uy vaa vy — 2) = Wy, — 1, w03 — 1)
4+ W, vy — 1, wy) _ (3.11)
and the boundary conditions

0. 1,0) = 17(1.0.1) = 1. HW@.0.0) 1. (3.12)

and similarly to X and @ the values for W (»,. »,, v;) are obtained from a recur-
rence formula which denotes the number of closed paths starting and ending in
point 3.
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The calculation of the matrix elements <m, | (b, — b)1 10> is carried out bv
an extension of a method used in a previous paper (see [5]and [9]). The result is

1 L ]

NG IR ,
Cml (b — by R0y = (=)o (m ) | ! ( {)’ s (3.13)
Heoni. ' Z

all matrix elements for v = m + 2 u being zero.
Hence the normalized optical absorption function (7' = 0) reads
1 ( # ')P by oy
' L] L}
nytomy! !

3 a0 X
Goln) = 3 N v

I O T T P T | p—ll P‘
‘-un‘lﬁ; I ( l ]_n, R LR L {?“1 -t 2 'Lt‘l } I I:Hfz - :3 1“2) T [)”3 | 2 [“3) I
0 2 ! ! ! -

—
2

Ly 2my o 2 g my -2 ay) 8 (00 — g b 2 (A — ) — oy m) o (3.14)

my!

1y f

IR AN L]

where the condition /* is given by

I

My T Pe ot g = (po— iy — iy — i) = 0

and cven. From this we obtain the zero-phonon line as a specialization. Since

in this case m; — m, — my; — 0. we obtain
Zy (22 . 2 p0y) + 0 0 Zp (20402 g 2 pag) = Zig (2 0y, 2 pp. 2 143) O
for g, = 0. 1.2 ... (¢ = 1.2.3). and for the strength of the zero-phonon line:
0 { ] W 2
1o = 2 (227 M. (3.15)
. 2 , Mo, o, 3.1
poo (2 p)!

where

L L AR L PR T Y

M, = S 2y = D2 — D2y — DN Z020 20, 21)  (3.16)
Hyy pig. gty 0
and
(2 p)! . ' _
ML (2 — Dt (— D!t =1. (3.17)

The quantity M., has been tabulated up to p = 6 (see [5]) and is proportional
to the (2 p)-th moment in the strong coupling limit.

4. Calculation of the Transformed Dipole Operator by Means of a Recurrenee
Formula
The alternative approach in calculating the matrix element <f| a; 105 is to

express the dipole part a; — e “a; e~ in a closed formula. We expand

. o |
aj = a; + [ay, S] + 9 [lar. S]], + - =

O b’ln}ja'
= ¥ X — expS{a’}. (4.1)

i) n.

where SU{a, } is the n-th commutator,

SOaiy = ([ (ai. 8L 8] ]08), ' (4.2)



Dynamical Jahn-Teller Problem in Cubic Symmetry 145

and exp S{a; } it only a shorthand notation of the preceding series. Employing
the abbreviations

B—=AB,. y=4By. 0=74B,. (4.3)
where B, — (b, — b)), we find the following general structure for the n-th
commutator:

SOV ay ) = ay fu + as yu + ay 0y . (4.4)

where the coefficients £, y,. d,, can be calculated by means of the recurrence
formula

Bniv = — (yyn + 0d,).
Vo1 = — (¥ Bu + B0n). (4.5)
Opi1 = — (0fn + Byn)
with the boundary condition
Bo=1. yo=10,=0. (4.6)

Although the recurrence formula is cyclic. we obtain a non-cyclic application
because of the boundary condition (4.6). Emploving the abbreviations

I = B0y, (X)=pB 92402, S =924 0%, (4.7)

we can calculate now the coefficients step by step and find the general ex-
pressions

Bo =1 for n=20.
3lan o o B B .
Boyw = 3 (211X 311 (1 1)[5} g l l)l’ (4.8a)
oo N\ 20— |
ve = 0 for n— 0,

$1sn 1) _ - , — 1 —1
you=Bo 3 RIP(E)y -2 I(" z ')(51 + 293 ("_ )}

i~o [\ 2 21 + 1
(4.8b)
py =10 for n—=0.
L Slen-) . n—1—1 n— 11— 1]
.:“ R .-,I[ d [2 [_1)_’( (.\-")u- 3!-2 ‘l ) l‘} e ls' ,
Ben-1 = N\ 20 | 2041 /f
(4.8¢)
" —y for n— 0.
N n — 1 _ n— 1 =1 I
Vo, — . Ay E (3 n)'l:' Z}H -31-2 l ){4‘.:}2 n :‘-’ > a‘_’ )
o L ( 1\ 21 Pty [
(4.8d)

where the expressions for d,, and 9., . | are identical to (4.8b) and (4.8¢). when
we exchange. respectively, 0 and y.

In (4.8) we have used the usual boundary conditions for the binominal
coefficients:

")--a (”)-1 for no— 0. 1. 42 1.9
(K‘_. = Og - “,_ or n = 0, -+ 1, -2 .... (4.9)

\

1 1|]|_\-|r;|{|.) sl
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From (4.1) we thus have

o B (S S5 L
nhil \ (2 ”)! {2 n e l]' ;,":ﬂ (2 n + l}‘
{ay [2n + 1) foy +Powi] @ [(2n + D) yey + y2ual =
-+ as; [(2 n - ]}():.’u + ézu . IJ} . ' H’l(”

5. Zero-Phonon Line (T = 0)

In order to calculate the zero-phonon line we use (4.10) and (2.5) for m, -
= my — my = m = 0. After integrating over the electronic coordinates we
arrive at
o0 l 2 .
A, = X 200 B, 105, (5.1)

o (2n)t
where we have used the fact that the matrix elements <0 (b, — b;)" |0 are

non-zero only for the specification given in (3.13). By symmetry argumentation

2]
O] S [0y = 5 <0 () 0} (5.2)

and using (4.8a).

@

\" 1 ZH‘;H , 1 n — I R § ) ) 2
Ag= 1+ 3 322 ( 5] ){01{11)-‘(&)" L1051 . (5.3)

32— T (n—D

Inserting (4.7) and employing (3.13) for m = 0 we obtain after some elementary

transcriptions

- 20 ¥ 31 ‘ (;'}2 ! 0 [
COL(ITEHEy 3010y = [ — 0 T, (5.4)
]
51
S
0
5
{\l L .f B |
0o 100 1
,E‘ -
Fig. 2

Fig. 2. Intensity I (2*) of the zero-phonon absorption for the T-t J.T. case. 4 is a mcasure
for the coupling strength. For comparison the non-J.T. result is given also (dashed line)

Fig. 3. Intensity /,(7*) of the zero-phonon absorption for the T-t J.T', case. 4 is a measure
for the coupling strength. For comparison the non-J1.T. result is given also (dashed line).
(Enlarged picture in a linear measure)
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where
n 3y — 30 ["{u —:.. - :)] .
0 _ ¥ _ 10 5.5
I gy ( v ) (n— 21 —p)! ' (65-3)
¥ D] + v — 1 ‘) |
I = 2( )l (v =plzd+mlt (5.6)
i Pray? (+v—u)!(+p)

With the help of combinatorial identities [10] we are able to perform the
summations over g and v in (5.5) and (5.6) and finally arrive at the following
expression for the zero-phonon line:

2 X 2nE D[ QR ERDIEEO (1)
:;.Hfl (”’ l)! -) IHO (”]“} (hl l— l} (n — ;{)T

Ay = 1 =-

In Fig. 2 and 3 the strength of the zero-phonon line is plotted against (£)%.
The linc has the two minima for (4)? =~ 2.769 and = 4.423 and two maxima for
(4)* ~ 3.48 and = 13.15. For very small and large valucs of (4)* the strength
approaches the behaviour of the non-J.T. case. The minimal points are ex-
plained as quantum-mechanical resonance points of the dynamic J.T. system,
which occur when the energy splitting of the degenerate high-frequency levels is
in the same order as the energy excitations of the low-frequency oscillators.

6. One-Phonon Line

The calculation of the one-phonon line is done in a similar fashion as the one
outlined in Section 5. The only non-vanishing matrix elements are now
Ly = {001 y2,:110> 40 (6.1)
and
K, = <010]0s,., (05 %= 0. (6.2)

K, differs from L, only in so far as 0 and y are exchanged. Therefore L, — K,.
And for the one-phonon line we find

. 1 x4 (2 4. ¢ 72 |n
4, =2 3 C001] ya, [o,\ VIR ( e 3)[*{.;] .

n 0(2 + ]) n=1 n.

3ign {(’1+1 P31 }{(n—l 1
) )

PR U +
150 P61~ 4 20 )20+ 1)2

,_'n—nlvl 2 ] 6.3
( 20 +1 )6l +-5)61+7)) ° (6.3)

Fig. 4 shows the strength of the one-phonon line in dependence of (£2). Reso-
nance points occur for (4%) = 3.48 and = 13.15. For the three maxima we find
the values (4%) = 0.56, = 5.72, and = 2].2,

7. Summary and Concluding Remarks

In this paper we have treated the T-t J.T. system by means of a non-linear
canonical transformation. To gain deeper insight in the optical absorption
spectrum we particularly have investigated the variation of the zero-phonon
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! ?{?: Fig. 4. Intensity /,(2%) of the one-phonon line for
- the T-t J.T. case. 4 is a measure for the coupling
- strength. For comparison the non-J.T. result is

T o1 given also (dashed line)

0071 and one-phonon line. In order to calculate
the matrix elements ‘fle “a/ e > 0> two
approaches were taken.

0007 In the first approach (Section 3) we have
been able to express the occurring combi-
natorial problems only as recurrence for-

mulae, whence no analvtically closed ex-

0000 Ty, 00 . i - i

1 : : s pression for the optical absorption function
has been reached. For the zero-phonon line.
however, we have obtained a one-to-one re-
lationship with the corresponding combinatorial problems of the method of
moments (cf. [5]). This enables us to calculate the zero-phonon line in the
entire coupling range merely by means of the complete set of moments in the
limit of strong coupling.

As shown in Section 4 we do not encounter the combinatorial problems of
Section 3 when we expand the total dipole part ¢ ~«; ¢~ into a power series.
In this case the calculation of the zero-, one-, ete. phonon lines vicelds expres-
sions whose structures are simpler than the corresponding results of our first
approach.

‘We have found that the phonon lines show a resonance structure. This is a
consequence of the dynamic J.T. effect and originates from the circumstance
that the effective energy splitting of the degenerate high-frequency level is
of the same order of magnitude as the energy cxcitation of the low-frequency
oscillator. Tt is curious to notice that the one-phonon line seems to have
minimal points for those AZ-values where the zero-phonon line has maxima.
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