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Numerical investigation of the (s + p)® T, system:
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Abstract. The cigenvalue problem of the ideal (s + p)® T, pseudo-Jahn-Teller system is
solved by numerical diagonalisation of the energy matrix. Low- and high-energy vibronic
cigenstates, absorption lines and spectra at zero temperature arc computed for representative
values of the electronic 2s-2p spacing in all coupling regimes. In addition the semiclassical
absorption lineshape function is calculated: best agreement with the absorption spectra is
found for strong coupling. The computational results suggest especially for high energies a
factorisation of the vibronic eigenstates for all coupling strengths. A reclassificauon ol the
vibronic states is then useful, which provides a link with the adiabatic energy surfaces,
enabling a unified description of the absorption spectra. The system exhibits an optical
resonance effect, and the calculations show under what conditions this effect can be neglected.

1. Introduction

Molecules and crystalline defects having a symmetrical configuration of nuclei and
involving nearly degenerate electronic states which are coupled by vibrational modes
are often referred to as pseudo-Jahn Teller (abbreviated as pJT) systems. In particular,
in cubic symmetry electronic 2s (A, )and 2p (T )states can interact via a triply degener-
ate odd-parity T, vibrational modge. A general solution to this problem has been given
by Ham (1973) and the low-energy eigenstates have been investigated extensively in
both the weak and strong coupling regions (Ham and Grevsmiihl 1973). Furthermore,
O’Brien (1976) developed a method based on the WK B approximation to give the wave-
functions and energy levels of the high-energy eigenstates. A numerical calculation is
therefore desirable to verify the predicted results and to link up the various parts of the
theory. This has partially been done by Kayanuma and Toyozawa (1976) for the low-
lying energy levels and by Kayanuma and Kojima (1980) for some of the optical absorp-
tion spectra.

The purpose of the present and following paper is to close the still existing gap and
to investigate the (s + p)® T, system along similar lines to those used for the ideal
Jahn-Teller systems. The vibronic eigenstates can be separated into two non-mixing
sets, one of which is independent of the coupling strength. The eigenvalue problem of
the other set is solved by numerical diagonalisation of the energy matrix in all coupling
regimes up to the highest energies. Under certain conditions it is useful to classify this
second set of vibronic states in three further sets, type A4, B, and C states, which can be
+ Present address: Piadagogische Hochschule Freiburg, Kunzenweg 21, 7800 Freiburg/Br., West Germany.
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associated with the adiabatic energy surfaces of the static problem. The strengths of
the absorption lines as functions of coupling strength and the absorption spectra at zero
temperature are calculated and described by means-of the type A, B and C states. In
addition the absorption lineshape function is calculated in the semiclassical approxima-

tion.

2. Ideal (s + p)® T, pseudo-Jahn-Teller system

2.1. Model Hamiltonian

Our model Hamiltonian consists of the vibrational part H , the electronic part H_and
the vibronic interaction term Hp“\ and can be expressed as

H=H +H +H,

where -
H ="+ q°), H, = op,. H = (2)1JK,=%. U ()

q, and p, = —id/dg. (j = x, y, z) are the dimensionless coordinates and momentum
Lonjugat&s which sdusfy the commutation rule [p,, q,) = 10, Furthermore

plzlz p; and qz-:-‘z g7.
=X,z 8

In the configuration of cubic symmetry (g, = 49,=4q. = 0) the excited electronic
singlet state [2s) is taken to have an energy 24 relative to the excited triplet state x>,
[y, |2>. The Hermitian electronic operators are given by

=25 (2| = Y |||

p; = II) <2§‘ + |25> <1‘ (i =x,Y, 7). [2)

Both the parameter § of the electronic 2s-2p separation and the coupling coefficient k
are dimensionless quantities. & is related to the actual energy difference E_ of the two
excited states by o = E_/2hw), where hw i1s the energy quantum of the vibrational
T, , mode.

2.2. Static problem

The eigenvalue problem for our model Hamiltonian H can easily be solved when we
omit the ionic kinetic energy (p*> = 0). This corresponds to a completely static treatment
of the lattice where the dependence of the various lattice coordinates is taken only
parametrically. The linear combinations of the electronic states that diagonalise H for
any choice of g, g, q_ are found by solving the secular equation (Ham 1973).

Two of the states are linear combinations of 2s and 2p and have the energies

£, , = 24" (0% + 2k%g?)"7 (3)

The two other states which correspond to the double root of the secular equation involve
the 2p states alone
4)

3.4 =24 —
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The adiabatic energy surfaces (3) and (4) have spherical symmetry in g-space and are
depicted for representative cases in figure 1. Note that ¢, , and &, , do not depend on
the sign of 6 and k, respectively.

It is convenient to introduce the stabilisation energy

g = K* (5)

G
Provided the coupling is sufficiently strong, so that ZcG > ||, a well develops with the
minimum at g = g, > 0 and the energy ¢_, (¢ = q,) = —&g[1 + (6/2¢) 1.
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Figure 1. Adiabatic energy surfaces (@d=0¢,=10b10=07¢,=4, (c)o = +’ g = 1,
d) o= +3e,=4 (o= 2, = 16. The energy surfaces have spherical s\mmctrv in
g-space. Thc doubly degenerate mnddle energy surfaces depend on the sign of 4: broken
lines in (¢) and (d) indicate these energies for 6 = 5 In (e) the lowest-lying type A, B and C

energy levels for J = | (see §3.2) have been drawn.

For weaker coupling (26, < |6]) the minimum occurs at ¢ = 0 and is given by
(g = 0) = —|d|. In this case no well develops.

When the electronic states are accidentally degenerate (6 = 0), the resulting in-
stability involves a linear splitting of the electronic degeneracy exactly as in the Jahn-
Teller effect, and a well of depth (—¢_,) develops even for weak coupling.

mll‘l

2.3. Vibronic eigenstates

The spherical symmetry of the static problem is a result of the model Hamiltonian H
being invariant under a continuous group of simultaneous rotations of the clectronic
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and vibrational coordinates. The total angular momentum operator J = L + [ therefore
commutes with the vibronic interaction term and thus with the model Hamiltonian H
but neither the vibrational angular momentum operator L nor the electronic orbital
angular momentum operator / do. Furthermore, the total inversion operator A = Ip,
also commutes with H and J, where [ is the inversion operator in g-space and the
electronic inversion operator p is given by cquation (2). Ham (1973) has used these
symmetry properties to give a general solution for the dynamic problem by classilying
the states by the quantum numbers J. J_ = M and the parity A" and separating them
into two non-mixing sets. For a numerical investigation of this system, his approach
is not convenient, however, as it leads to a set of coupled differential equations which
arc difficult to solve.

Instead, as H, I? and L. constitute a complete set of commuting observables, 1t is
of advantage to use the complete orthonormal set of eigenvectors |nlm) =
2N + L)Lm) of the 3D isotropic oscillator as vibrational states with the energies
g, =2N + L+ Iwhere N,L =0,1,2,....

A complete level of degenerate states transforms according to the symmetrical
product [n] of their representations, which can be expressed as (Heine 1964. p 258)

(nl= 3 D (6)
I.=0 2o0r1.3
where . = 0,2,....nifniseven,or L = 1.3,..., n if n is odd.

Furthermore, the electronic 2s and 2p states transform under rotationas D (/ = 0, 1)
and the orthonormal eigenvectors common to H_. [ and [_are given by |ncz'm>. The
eigenvalues of H_ corresponding to |200) and |21m) are + 0 and — o, respectively. Thus,
the electronic 2s state lies above the 2p state for positive values of é and below it for
negative values of 9.

Taking these two sets of basis states, we employ the vector coupling theorem and
construct a product space which transforms according to the direct product

[n] % Df = E(DL” +D,_, t...+ D”‘_”).

From the range of L values given by a certain vibrational quantum number n according
to (6), we can pick out those values of L the direct product of which with / leads to a
reduction containing D ,. With the vector coupling theorem we find that L can take
only the values L=J + I, J,J — lfori=1(andJ 2 1: L =1forJ =0)and L = J
for | = 0.

The orthonormalised vibronic functions belonging to the component M of the D,
representation can now be formed with the help of the vector addition coefficients

(Messiah 1969, p 1054)

[JM . (J + 2N)J,2s) = |(J + 2N)JM [200) (7)
UM (L + 2N)L.2p> = Y {LUM — mm[JM)|(L +2N)LIM — m)) 121m)
m = ~1,

0,1

with the energics &(s) =J + 2N + i’ + 0 and ep,L)=L + 2N + ; — o where
L=J+1,J,J—1forJ =1and L = | forJ = 0. Note that the 2p states correspond-
ingto L = Jand L = J — | are defined only for J > 1.

Furthermore, as the pscudo-Jahn-Teller term H_ . has even parity in the combined
electronic and vibrational space, it can mix only those states of (7) to form vibronic
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cigenstates transforming as D, which have the same parity. This then leads us to dis-

tinguish between two types of eigenfunctions.
Type-I vibronic eigenfunctions of H which belong to J, M and have parity A" =

(—1) can now be expressed as

oM = Y [a(.j.J + 2N) [JM.(J + 2N)J. 28>
N=
+ bJ.j,J + 2N + 1) |[IM,(J + 2N + D (J + 1), 2p)
4 eJ.j.J + 2N = D)[IM.(J + 2N — 1)(J = 1).2p)] (8)

where the principal quantum number j = 0,1,2,... classifies states with the same
J. M. ForJ = 0the last term is absent: ¢(0, j, 2N — 1) = 0. The (2J + 1)-fold degenerate
energy eigenvalues of H which correspond to (8) are denoted by &,(1,J).
The normalisation of (8) reads
S [latJ.j.J + 2N)

N=0

The summation over the first term represents the total admixture of the s—J states of
(7). Similarly, the total admixtures of the p«J + 1) and p~J — 1) states of (7) are given
by the summations over the second and third terms respectively.

On the other hand we find that the vibronic eigenstates with parity A’ = (—1)""!
consist purely of the p-J states of (7) and are therefore completely independent of
H_,.. Type-1I vibronic eigenfunctions of H belonging to J, M and A’ = (—1)7! can

pIT
thus simply be expressed as

WIM — |JM,(J + 2N)J, 2p) 9)

.~

2 B + 2N + D)+ el d + 2N = 1P = 1.

with the energies &(II, NJ) = J + 2N + 3 — 8. There are no type-II states for J = 0.

The matrix clements of the vibronic interaction term within the space of the vibronic
basis states (7) can now be calculated by applying the irreducible tensor method and the
Wigner—Eckart theorem to the rotation group in three dimensions. For this purpose
it is convenient to express the vibrational and electronic parts of H ;; in terms of
irreducible tensor operators and to calculate their reduced matrix elements. We shall
not give details of this calculation as it has already been reported elsewhere (Wybourne
1974, §20.6, Kayanuma and Toyozawa 1976, Grevsmiihl 1976) but shall merely give
the general form of the matrix elements

(IM.(J + 2N = D)(J = 1).2p|H [JM.(J + 2N)J. 25)
= k[J2J + 1 + 2N)A2J + 1)]'?
(M, (J + 2N + )(J + 1), 2p|H , [JM.(J + 2N)J. 2s)
= —k[(J + )(Q2J + 3+ 2N)/(2J + D]
(UM (J + 2N — D)(J + 1), 2p|H_[IM.(J + 2N)J, 25}
= k[(J + 1)2N/2J + D]
(M (J + 2N + )(J — 1).2p|H_,[JM.(J + 2N), 2s)
= —x[2J(N + 1)/2J + ]2 (10)

The eigenvalue equation for the type-I states can now be set up. Multiplication
from the left with the bra states of (7) yields an infinite set of equations which are coupled
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by the coefficients a, b, and ¢ of the eigenvector. Expressing these equations in matrix
form, we find a symmetrical band matrix with in general two off-diagonal elements on
cither side. The eigenvalue problem is solved by numerical diagonalisation of the energy
matrix. The computations were carried out on the Oxford ICL 1906A computer by
making use of the relevant subroutines of the Nottingham Alogorithms Group.

3. Vibronic eigenstates

3.1. Low-energy eigensiates

Figures 2 show the lowest vibronic energy levels as a function of the coupling strength
(6,)"'? for representative values of the parameter d. Note that type-1I energy levels are
independent of ¢, _

In the strong-coupling region a strict ordering of the type-I energy levels belonging
to the same principle quantum number j according to their J -values is found, as has been
predicted by Ham (1973) and also found by Kayanuma and Toyozawa (1976). Con-
sequently, a crossing of the levels may take place at weak or intermediate coupling.
In particular, a crossing of the two lowest states with j = 0,J = 0 and J = | can occur
only for 6 > 0,i.e. when the J = 1 stateis below the J = Ostate at zero coupling strength.

An expression for the energies of the lowest type-l states in the strong-coupling
region is found by an evaluation of the numerical data

es(I,3)) =Jj + gt J? 4+ J + 1 =874 (11)
which holds well for ¢, = 4 and 16| < 5, where j,J =0,1,2,..., but not too large.
It is interesting to note that for § = —1,j = J = 0 equation (11) s the exact expression

for all coupling strengths. Equation (11) is in agreement with an expression for the
relative energies of the low-energy states in the strong-coupling limit (2¢ > 0], e > 1)
predicted by Ham (1973) (see also equation (15) of Grevsmiihl (1981)) and is also con-
sistent with an analytical formula recently obtained by Pooler ( 1980).

Our computational data also confirm Ham’s strong-coupling formulae for the total
admixtures of the s—J, p—(J + 1), and p~J — 1) states (7) in the type-I states (8). As
expected, best agreement is found for ¢ 2 4, small 6| and j. J not too large.

3.2. High-energy states—Type A, B, C states

A further classification of the type-1 states proves particularly useful for large values of
6| and provides a link with the adiabatic energy surfaces. Figures 3 show the vibronic
energy levels for J = 1 as a function of the coupling strength for 0 = +3, which are
crucial for the interpretation of the absorption spectra in §4. From these graphs and
others for different J and 6 we draw the following conclusions.

3.2.1. Type-I energy levels with given J exhibit a tendency to cross which appears to be
strongest at high energies and for large |6|. More specific, in the case of 6 < — 1 astrong
tendency to cross is found for all energy levels involved and in the case of & > } for the
high-energy states. Although the levels with the same J actually never cross, as the wave-
functions do not factorise, it is reasonable to regard them as crossed when the tendency
is strong and to investigate the behaviour and properties of these new states. For general
6 and J, type-I states may then be divided into the three groups A, B, and C, each of
which carries its own set of principal quantum number in place of ;.
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(a) Type A energy levels exhibit a parabolic tendency to descend for increasing
values of the coupling constant. These states have been the subject of the discussion
above and are given for stronger coupling by (11).

(b) Type B energy levels show only slight dependence upon the coupling strength.
For sufficiently large principle quantum numbers B, these levels are independent of
¢, and 1n good approximation given by

e,B))=J + 2B + 1 —0 (12)

C=0
‘_f C:O
‘/
—H8-4 « H=-f
8-3 «-B:5
—8:=2 «Bz4
€
=1 «—B-3
—8=0 «—B8:2
o X
L i KR
Z \\\\ B
b x X %% «B=0
x
e 2l
0 1 2 3 4
e}/?
Figure 3, Vibronic energy levels with J = 1 versus coupling strength g, for o = -3 (a),

6 =3 (b). Full curves represent type-1, broken ones type-1l levels. The numbers on the
diagrams refer to the j-values of the levels. Type B and C levels are indicated by arrows and
denoted with their appropriate quantum numbers. The crosses on some of the levels in
(b) refer to maxima of the type B absorption lines in §4.
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where B=0,1.2,..., J = 1,2.3..... As this expression is identical to the eigenvalues
of the pJ — 1) states of (7). the existence of the type B levels is thought to be mainly
due to the influence of these states.

(¢) Type C energy levels exhibit an ascending tendency for increasing coupling
strength. For the range ! < [6| < 5 they are well approximated by the upper branch
of the hyperbola

e(LCH) =[14(J+2C =28 + 3+ 701"+ +2C+ o] + 5 + 7, (13)

where

0 0 o> 0.5
o= and » =
{ and 5 {l for 5 < s

3.2.2. The type A. B and C vibronic states can be associated with the lowest, middle and
highest adiabatic energy surface of the static problem (§2.2), respectively. In figure 1(e)
some of the energy levels belonging to these states are indicated. There are of course
two degenerate middle surfaces, one of which belongs to the type-11 energy levels.

As the coupling strength increases, and ¢, > 0|, the well of the lower energy surface
(3) becomes deeper and contains more type A levels. Simultaneously, the highest-cnergy
surface becomes increasingly steeper with the effect that the type C levels are shifted
towards higher energies and that the spacing between the levels increases. The middle
surface (4) is of course not affected by ¢ but depends on é. Consequently. type B levels
arc not expected to depend significantly upon &.

The strong and weak tendencies to form type A, Band C energy levels can be regarded
as an intrinsic feature of this pJT system. Whenever the lowest-energy surface lies close
to the middle one, as for & > 0, or close to the middle and upper surfaces, as for || < 05,
the tendency to form type B, or B and C levels appears to be weak. It is impossible to
identify the type 4, B and C levels purely by inspecting the behaviour of the energy
levels as a function of coupling strength (see §4.1).

4. Optical absorption at zero temperature

We assume that the vibronic states ¥, . . (ls) associated with the non-degenerate
electronic s ground state |1s) = |100) have the simple product form

8 g (Is) = |2N" + J)J'M"> [100) (14)

NI M
with the energies &(N'J, 1s) = —e, + 2N+ J + 3 where N'.J'=0.1,2,..., Note
that the electronic s state lies lower than the zero point of energy (see §2.1) by the
energy ¢,, which is assumed to be very much larger than [d| and . As in §2.3 the vibra-
tional states are again eigenvectors of the 3D isotropic oscillator.

The electric dipole moment operator D is for linearly polarised light given by
D, =en and its matrix elements between the electronic |1s) and |2p) states are denoted
by

D = (1s|D [n) (15)

where n = x. v. or z. As the components of the electric dipole moment operator have
T,, symmetry and transform in the combined space of electronic and vibrational
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coordinates as a set of functions belonging to J = 1 with parity A" = —1, non-zero
matrix elements occur only between vibronic states of opposite parity for which the
difference in J 1s 0 or +1.

For very low temperatures absorption occurs only from the lowest vibronic ground
state (14) with N' = J' = M’ = 0. Electric dipole transitions can then take place only
to vibronic type-I states with J = 1,j = 0,1, 2, ..., but not to type-lI states (see §2.3).

The matrix elements of the electric dipole moment operator between the states (14)
and the vibronic type-I states (8) have in the case of n = z the general form

(\Pi‘:?' |DJLP~'J'M'( Is))

_ , (J + M)(J — M)\'?
= DN=Z0 |:L(J,}.J + 2N — 11(—--- 737 D) )

6.\"_h'dJ',J—1(§M'.M

J+ M+ 1)(J - M+ 1)\ i "
= blJ,j,J + 2N + 1]((_ ! - )) 5;\".N0J'.J+16M’,MJ

J+1)(2J + 3

(16)
where ¢ = 0 for J = 0.
For zero temperature the absorption cross section can be written in the form (Dexter

1958, Lax 1952)
a(00,8) = C 3 | (VLD W 50(18))]*8(e(L, j1) — (00, 1s) — ¢)
i=0
where C in the case of a crystalline defect essentially describes the macroscopic effect
of the dielectric medium on the absorption centre and is proportional to the energy

absorbed in a transition.
The normalised absorption spectrum can now be defined as 15(00, &) = a(00, g)/CD?.
With equation (16) we find

1400, ¢) = 20 Me(j)é(e(1, j1) — (00, 1s) — ¢) (17)
j=
where the strength of the j absorption line is by definition given by
MS() = |e(1./.0)|? (18)
with;j=0,1,2,....

4.1. Absorption lines

In figures 4 the strengths of the absorption lines which are associated with the low-
energy type-I states with J = | and main quantum number j are plotted against coupling
strength for & = +3. There are several groups of absorption peaks which may be
associated with the type 4, B and C states of §3.

Two situations arise. When the type-I energy levels show a strong tendency to
cross, a group of absorption peaks can in good approximation be replaced by an envelope
line which is a smooth and continuous function and consists mainly of one or two
intensity contributions. In particular, this can be done for the type B and C absorption
lines for & < —* (figure 4at) and for the type C lines for & > 1 (figure 4b). Points on an
absorption line then correspond to points on the associated type B or C energy level.

t The introduction of the type (B = 0) line makes compensational corrections of the type A lines necessary.
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Thecased = — 2 (not shown)can at least for weak coupling be regarded as a reference
point of the spectra as in this case the lowest (J = 1) states at &, = 0 are the degenerate
s—J and pHJ — 1) states of (7) with N = 0.

The intensities of the type A, B and C absorption lines follow approximately the
expressions

P (¢

Aleg) = ol exp(=Bie )

P, &) = (1 —a,) exp[—ﬁzaﬁl + o,

P("orﬁ‘?- l(ﬁG"l = a3[l o CXP( _ﬁ?ur‘(i)] | (19)

where A, B,C =0,1,2,... and &, f, (i = 1,2, 3) are positive constants for given 0.

Alternatively. when the energy levels shows a weak tendency to cross, the intensity
overlap consists mainly of (wo or more absorption lines and does not show a simple
functional dependence on &. It is then impractical to introduce envelope lines in the
above manner. However, the maxima of a certain group of absorption lines correspond
to points on the j-energy levels which lic on lines equivalent to the type B or C levels
and with similar ¢, dependence. An identification of these levels is therefore also possible
for weak tendency of crossing, and has been indicated in figure 3(b) for the three lowest-
lying type B energy levels. For the type C levels we may formally extend the range of
validity of expression (13) to |0 < |, where 3, =0, 7, =1 yields a reasonably good
approximation.

4.2. Absorption spectra

The absorption spectra are in general characterised by three different parts originating
from the type A. B and C states with J = 1 and their associated absorption lines. The
discussion above revealed that each of the type B or C levels belongs in general to a
group of lines and that the intensity of a single absorption line with given g can, especially
for weak coupling, contain contributions from all three type A, B and C levels. The
spread in energy of an absorption peak in a spectrum may thus be taken as a characteristic
for the tendency to form a particular type B or C energy level. The introduction of an
absorption envelope line means for the spectra that a group of lines is replaced by a
single absorption line with some intermediate position.

Figures 5 and 6 show the absorption spectra for representative values of ¢ and
¢, = | and 16. The normalisation of the spectra has been used as a check that all sig-
nificant intensity contributions have been taken into account. At low energies the spectra
of particularly the intermediate and strong coupling region are characterised by evenly
spaced type A absorption lines. At a certain energy the spectra show an absolute maxi-
mum associated with the lowest type B level after which the spectra exhibit irregularly
spaced lines of different intensities. The spectra at highest energies are featured by an
intensity peak belonging to the type C = 0 energy level.

Whenever the lowest adiabatic energy surface is far away from the two upper ones,
type A absorption lines appear at the low-energy end of the spectra. In particular, this
is the case for & < — ! at all coupling strengths. The type A lines exhibit a distribution,
the maximum of which is shifted towards lower energies and larger values of quantum
number A as £ becomes larger and the adiabatic well deeper (fixed 0). The width of this
distribution increases for increasing coupling strength. In the strong-coupling region



677

f the (s + p) @ T, system: ]

estigation o

Numerical inv

u23q vy saul] p 2d4A) ARl "pIeAIpUl U ARY | ‘0

"PAYIUIPT I2AUIYM PIIOUIP

= D PUB g 710 = g yum syead uondiosqe diqissod Jaadudgpy onfea-f s1 £q pajjeqe] st aulj uondiosqe

goea pue § + %2 — 2 sureSe panojd ussq sey (L) Jo (2 ‘00)J I =epue(q o= i- =e¢puey="210]y0 = [ 1 endeds nondiosqre pasijrwIoN ‘s 24ndi{

ol S 0 0]} S oL S 0 -—f
P w EAERRRINE (L
+3-3 <4+ -3 055
SPGB e DR B e A 4 e b SR 00 TS SR
+0u -0l . 0L
=2 | k8 | ! ]
”I I. g-0L .”I 5 Ium.o_. I 1=8 I. 0
§ ! I g I 4 ]
- _.um - = - b -
— of
k 5P ] E 0=2 J I §
0=3
” bt g ov ]
.mn |“. 0L ”l |“ 0L I In -0t
“ { Lol o Jin ]
£=9 19) 0:8 0=¢ (q) £-2¢(0) g
ol | 1 L 1 1 L | 1 1 1 [ 1 ooy 1 ] 1 L 1 s a1 [ 1 1 1 1 I 1 1 1 i 1 Ji




678 U Grevsmiihl

1'.: 11111111 v T T T | o e ot RSO TV R SR R L
o) 6=-5 i B8:=0
]
|
-1 : A
0 F |
i Il C:FO_H'IB=3J
[ 22 asih 5 - S
r S A9 [ B et _
0 ’ ' ' SR E
; 4 ! 4 R
ff : "2 \\
s i \
," I \\
Wi : A=19 I
3 ’ [
£ I
I’ A:=3 |
L/ :
IU_’" YYYY I T T T T T T
-15 -10 - 0 g

1
[l
25

0- T T 1:51
[T e
30 3%

1; | B R A R T RS R SR | T 17 1 1 T T T T T ‘Y"“I':‘:=0| T T | I e, e
F [b) 6:-% :
[ I
i I
107 I 4
£ ! =0
L I B= s
[ BT | z=--
- 7 AN >3 A% | e R
-~ - Y
i A . i )
!‘,10"2; . \ 1 =2 "y F
; = ;: B8:3 S C=1 3
,/ lt \\\ ]
' 1 \ 1
/ LY
1073} e : NE
Fooet ot : :
3 i 1 £
L ,’ A:3 I | ‘ 4
Joe; : 1
o s ', . AL

T 15[
NUREIR]
30 35

1 T T T T T F T L = 0 nl o § T L T T T T T T T T T T T
]
[C] 6=0 18=0
|t
I
|
1 .
07 F ; 3
A=13 t c=0
- G Bl Bl s Eenp
L - ~ I - T i
Iu ) r \\ | /r q
2L 3 1 B ~ =
n- F /r’ \\ | .r" 8-2 a=3 ‘\ C=1
P g T
[\
¢ \ : \\
i z( \! R "\
-’ ? ]
10 3 3 Iz \‘ ] 4 -E
E i 1
i ’.r 1 \
[} y
by A=3 1 b
i LY} 1
I
ﬂ‘ ‘Il T T T T T T T T

T

1

IR
5 20

fErren
25

Ylwi




Numerical investigation of the (s + p) ® T, system: [ 679

1 L] T | R BT Ee ML ST ) T T T T T Ll ¥ Al T T T T T T T T Ll T T T T T T T =
(d) 6= i
:B:O
]
107 F | !
] A-10 | c=0
x  . ' P it
1° 4+ N B o
1072F ; ; £ 3 ca1
- 4 ‘: / \\ 1
!\' /) ! ‘_ri? \\ 1
10'3> - | ? G b
: |
WL
ooy 1 1 5
gl U770k 5 5 o L 8 e I' . :* ......... |
-15 -10 -5 0 c—cooT 5 10 1
|||II||ll||[l||!l|||I]!IIIIIIIIIII||I?|
J—0 5 10 15 20 25 30 35
1: | P P T T e L Gl AR R, T T L A R N N (S e R U PO | T
F le) 6=5 :
i 18:0
]
[ ]
]
107 ' E
3 A=9 : c:0 ]
Ia 4 \: IlIf ~
072 =5 HERER i N G2
Il : : \\
’ I [ N
’ | I \
’-' I ] X
10—17 ;f I‘ 8:2 : \\'j
E ’ 1 I k
ra 1 ] :
7 | ‘ BRI I
ol A2] | IEHE !1
-15 10 -5 0 €-gq* 9 10 15
o T oo I e e
=0 5 10 15 20 25 30 35 L0

Figure 6. Normalised absorption spectra at 7 = 0K for ¢; = 16 and 8 = —5(a), 6 = —3}
(b),d =0(c), 0 = % (d), and & = 5 (e). 1:{00. ¢) of (17) has been plotted against & — &, + ';’
and each absorption line is labelled by its j-value. Whenever possible, absorption peaks
with B=0, 1, 2, 3 and C = 0, 1 have been indicated. Similarly, type 4 lines have been
denoted whenever identified. The notation in (a), for instance, means that all lines at the
low-energy end of the spectrum up to and including j = A = 19 have predominantly type A
character. The broken lines represent the semiclassical absorption lineshape function.
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the distribution resembles a Poisson distribution with approximately equidistant
lines of energy separation | (see also figure le).

The type B states with J = 1. and the middle energy surface, can be associated with a
series of absorption peaks, the positions of which are given by the energies of these
states. Because of the nature of the type B levels, the relative positions of these peaks do
not change significantly with ¢, and the separation of the peaks 1s approximately
equal to 2. However, according to equation (12) the absolute positions of the peaks
depend on (—4). Because of this circumstance the lowest type B absorption peaks can
overlap the type 4 lines in such a way that, even in strong coupling, a type A absorption
peak is not visible in the spectra. which is the case when the lowest and middle adiabatic
energy surfaces lie close.

The high-energy end of the spectra is characterised by absorption peaks which can
be associated with type C states with J = 1 and the upper adiabatic energy surface.
The positions of these peaks are of course given by the type C cnergy levels which are
shifted towards higher energies as & and |d| increases (see equation (13)). The separa-
tions of the peaks are =2 and approximately constant for given & but increase for
increasing values of ¢ . Note that at o > ! and strong coupling, i.c. when the lowest and
middle energy surfaces are far away from the highest one, the spectra are characterised
by an ‘energy gap’ of extremely low intensity (figure 6¢).

From figures 5 and 6 it can be seen that the type (B = 0) absorption peak carries
about 99 to 70 %, of the total intensity and the type A peak up to 10 or 20 %,. The intensities
of all other peaks are less and increase for increasing coupling strength but decrease for
increasing values of & > 0. Note that in weak coupling and for 6 < — the type 4
contribution is larger than the type C = 0 one, but vice versa for o > |.

5. Absorption lineshape in semi-classical approximation

For the (s + p)® T, system the lineshape function may be calculated in the semi-
classical approximation by essentially the same method which Toyozawa and Inoue
(1966) have used to investigate the absorption bands of Jahn-Teller systems. However
for the heavy particles in the initial state of the transition we employ the quantum-
statistical probability distribution function P_ instead of the high-temperature Boltzmann
distribution.

As the energy solutions (3) and (4) of the static problem depend only on the radial
coordinate g, it is of advantage to introduce the polar coordinates (g, 8, ¢) also for P_.
The vibronic states associated with the electronic ground state have the product form
(14). P, is therefore the probability distribution for the 3D isotropic oscillator, which
can be derived from the formulae given by Landau and Lifschitz (1967, §§ 28, 30) for the
1D harmonic oscillator. The quantum mechanical probability that when the system
is in the initial electronic ground state it will be found in the volume element dQ =
dedd sin 6 dq ¢* of phase space is represented by dW, = P dQ where P, = (bym)*% x
expl—bg~) and b = tanh(1/2f), f = kT/hw. At high temperatures (b x 1/28), PE 18
the classical Boltzmann distribution within the energy continuum of the initial electronic
state. At low temperatures (b ~ 1) P, takes the form of the quantum probability dis-
tribution for the coordinate in the ground state of the oscillator.

The normalised absorption lineshape function is found to be

~

e =17 | dpr

[

df sin ﬂj dqq® P (e (q) — ¢ (q) — ©)

0 0
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where the adiabatic energy surfaces ¢, are given by (3) and (4) and ¢ = —¢, + q%/2.
Integration and summation can then be carried out by making use of the properties
of the delta-function:

I'(e) = 1‘:{'8) + I5(e) (20)

where

e — g, expl —[(e — &,)* — 0%]b/2¢|

!?“,j — %“(21[] 1 Z{bg},gu}.—‘)': [(}‘: ~ {,0’2 _ 0‘2]1_-2

for e —&,| = 18] -
and
Ie) = iél'b' — &, + 0) for —w0 <e< +o0.

The spectrum consists of three parts in accordance with the three different adiabatic
energy surfaces: a delta function of constant strength and two wings which show re-
flection symmetry to cach other and have a gap of 2|3| between them where the absorption
intensity is zero. Each wing carries ; of the total intensity.

For strong coupling and/or high temperatures, i.e. for x/2 < | where x = bd*/2z_.
the positions, magnitude of the maxima of the wings, and width at half maximum are
given by

£, =8 T [(1+ x/2)2 b]''*

I:lnax = “‘.«;36’) (2‘5:"”8(})1'2 (1 + .\';’2)
A = H2e./b)" 2 (1 — x/3). o

For 0 = 0 the expressions for & and 2 are exact for all ¢; and T.

The lineshape function (20) has been drawn in figures 6 for ¢, = 16 and various
values of & (broken lines). In the same way as the lowest, middle and upper adiabatic
energy surfaces can be associated with the type A, Band C absorption peaks, respectively,
the three semclassical contributions correspond to these peaks and can be denoted
accordingly.

Turning first to the low-energy type 4 wing, we find good agreement with the com-
puted spectra as regards the position of the maximum, where the accuracy improves
as || becomes smaller. However, the magnitude of the maximum, the width and the
area of the wing are given in good approximation only for é > 0. The delta function of
(20). which corresponds to all of the tvpe B absorption peaks. is placed close to the
centre of gravity of the type (B = 0) peak. particularly in the case of o 2 — ": Note that
the delta function takes into account only some fixed part of the total type B intensity
with best agreement reached for 6 2 0. Finally we find that the high-energy type C wing
is only roughly related to the type C peaks. However, the gap between the type A and C
wings (for & # 0) exhibits itself in the spectra as a drop in intensity, especially for large o.

6. Discussion and conclusions

Our computational results suggest that a factorisation of the type-1 vibronic states does
not only occur for the low-energy states in the strong-coupling region (Ham 1973,
Grevsmiihl 1981, §4.1), but also in good approximation for the high-energy states at
all coupling strengths whenever the energy levels with the same J show strong tendencies
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to cross. It is then useful to classify the type-1 states into three further types with quantum
numbers A, B and C which can be associated with the lowest, middle and upper energy
surface of § 2.2, respectively.

Moreover, the analysis of the individual absorption lines versus coupling strength
reveals that, in general, a group of absorption peaks can be associated with either one
of the type B or C energy levels, or with all the type 4 levels, with J = 1. This circum-
stance makes the introduction of type 4, B and C levels also useful for weak tendency
of levels crossing, enabling a unified description of the absorption spectra for all values
of 6 and ¢

o Br1en (1976) developed a method based on the WK B approximation and calculated

the higher energy levels as
el,A)=A + % — &,
a{l.BJ)=J+2B+;—5 (22)

where A, B =0,1,2....,andJ = 1,2,3,.... Thefirst expression which is valid only under
the condition ¢ > 20, descrlbes the type 4 energy levels of §3.2 and LOITCS})OHC'S to
equation (11). Best agreement with the computed levels is found for |0 < 1, &5 > 1,
and energies ¢ > 6, as expected. The second expression is identical to the energies (12)
of the type B states. It has been obtained under the condition (¢ + J) > 1. which is
clearly demonstrated in figures 2. No type C states appear in O'Brien’s calculation.
This has to be expected as her calculation incorporates the conditions of the strong-
coupling limit (2¢, > ||, ¢, > 1), and the solutions apply , which is in
agreement with our compuldtlonal results. Even when extendlng this mcthod to larger
values of |d|, we expect better results for & < 0 than for é > 0, as the WKB approxi-
mation does not give good results when the energy surfaces lie close, which also agrees
with our comments on the strong/weak tendencies of the vibronic energy levels to cross
(see §3.2).

The absorption lines (figure 4) show a pronounced resonance structure as the coupling
strength is varied. In general, resonance points of zero intensity occur between type B
absorption lines at the energies ¢ = ] + 2B — o, where B=10, 1,2, . ... However,
whenever type C and B levels lie very close, we expect some interference between their
associated absorption lines, and the minimal points may only be relative. Similarly,
for & < —3, the absorption lines exhibit pronounced relative minima when changing
from a type (B = 0)state to a type A4 state behaviour (figure 4a). The associated resonance
energies are then approximately given by e =2 — 6 — ¢g°.

From the investigations of an ideal Jahn-Teller syatem (Grevsmiihl and Wagner
1973) we conclude that the optical resonance effect is a direct consequence of the dynamic
pJT effect, reflecting the fact that the effective splitting of the purely electronic levels
can be of the same order of magnitude as the elementary phonon excitations. In par-
ticular, at the resonance points energy may be exchanged between the electronic and
nuclear system which will affect the transition probabilities. When both systems are
completely in resonance, we expect the absorption intensity to drop to zero at the
frequency which corresponds to the exchange (resonance) energy. Note that for strong
tendency of energy levels crossing, i.c. when the energy surfaces are far apart, the absorp-
tion lines may be replaced by envelope lines, and the resonance effect may then be
neglected (figure 4).

Recently, Kayanuma and Kojima (1980) have used the method of numerical
diagonalisation of the vibronic Hamiltonian to calculate the absorption spectra for
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5 =0 and +5 and various values of the coupling constant. Whenever comparable,
our results are found to be in complete agreement with theirs.

The method of numerical diagonalisation has also been applied to the non-degenerate
and doubly denenerate pJT systems (Natsume 1976). The absorption spectra of these
systems show a remarkable resemblance to the spectra above. For the same parameters,
best agreement is found for the low-energy lines, particularly for large |3| and/or strong
coupling, which agrees with the fact that the adiabatic energy surfaces of all three cases
show a qualitatively similar behaviour but differ, of course, in regard to their number
and dimensionality.
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