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Numerical investigation of the (s + p) ® T, system:
I1. Reduction factors and emission spectra
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Abstract. The eigenvalue problem of the ideal (s + p)@ T, pseudo-Jahn-Teller system is
solved numerically. Reduction factors and emission spectra at finite temperatures arc com-
puted for representative values of the electronic 2s-2p spacing in all coupling regimes. In
addition, zero- and one-phonon lines of emission and of absorption are calculated in the

strong-coupling limit.

1. Introduction

In the preceding paper (Grevsmiihl 1981, to be referred to as I) the eigenvalue problem
of the ideal (s + p)® T, pseudo-Jahn-Teller system was investigated numerically and
the vibronic eigenstates and absorption spectra were calculated. Here we continue this
investigation and present the results for the reduction factors and the emission spectra
at finite temperatures for representative values of the vibronic coupling strength and
of the electronic 2s-2p spacing.

In order to compare the properties with the results in the strong coupling region,
the orthogonal transformation of Ham (1973) is used to obtain explicit expressions for
the eigenfunctions and to calculate the zero- and one-phonon lines of emission and of

absorption.

2. Reduction factors

As the threefold degeneracy of the electronic 2p states can only be lifted by a perturbation
of symmetry E T, or T, of O, itis of considerable interest to investigate numerically
how the propcrncs of thcsc slates compare with those of the lowest type-1 vibronic
states with J = |, which also transform in cubic symmetry O, as T,

Following Ham (1965, 1973) we may define reduction factors K forthe (s + p)@ T,
system as the ratio of the response of the lowest triplet vibronic state to that of the elec-

tronic 2p state for an external field of E. T, or T, symmetry.
For any electronic operator O"” transformmg as the y-component of the irreducible

representation I' we define
¥ t’,|0'“*|Wl‘_“;' = J'"(l")(2lM|0”\21M> ()
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provided the last factor is non-zero. The size of the matrix elements and thus the magnitude
of the initial linear splitting of the level are proportional to the approprate reduction
factor, which itself depends only on the coupling strength of the electron-phonon inter-

action.
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Figure 1. Reduction factors K (E ) = K,;{Th} (a) and K::{T;.) (b) versus stabilisation energy
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scale.

= x? for various values of é s and ¢ are defined in I, §2 Note the double logarithmic

Representative electronic operators of symmetry E, T, and T, may be defined in
terms of the electronic orbital angular momentum, as done by Ham (1973). Non-zero
matrix elements of these operators within the lowest type-1 vibronic level (I8) with
J = 1 may then be calculated and the reduction factors be expressed in terms of the
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coefficients b and ¢

o

KT, )= ¥ {[e(1,0.2N)]* = |[b(1,0.2N + 2%}
N=0
K(E) = Ky(T,) = 3 {fc + {olb(1.0, 2N + 2)[7}. )
N=0

The electronic operators transform in the full rotational symmetry of this vibronic
model as a set of functions belonging toJ = 2 with parity A" = + 1. The reduction factors
for operators of Esand Tz; symmetry are therefore the same as long as we limit ourselves
to linear coupling.

The expressions (2) correspond to the ones given by Ham (1973) in terms of the f,
and f, coefficients of the coupled differential equations. For the strong-coupling limit
he was able to predict the values K! olT, J = 0 and K'(E ) = 1 . This means that in this
limit the magnetic splitting of the Iowest type-1 v1bromc State wnh J = 11is completely
quenched, whereas the effect of applied strain is not. The strain splitting of this level is
reduced by 809, compared with the splitting of the electronic 2p states.

The overall variation of the reduction factors with ¢ (see figure 1) depends crucially
on the value of the electronic 2s-2p separation parameter o, 1.c. on the type of state at
zero coupling strength. In the weak-coupling region we find through a simple perturba-
tion approach the following expressions:

1\
KiE) = (10 + 37 K3 T

_oleg
‘){02 Jz

for ¢ < —5‘

K(;{T,s)
foro = —é
KYE) = KT, = 31 = &)

and foré > —é

KNE) = KT, ) =1 — %
40 + 1)

Figure 1 shows that the weak- and strong-coupling expressions hold reasonably well.
For 6 « —1, K, (T, ) becomes very small also in the intermediate-coupling region and
decreases as |0[ increases. Note for & < 0, K (E,) is less than § as this asymptotic value
is approached. In the interval —1 <0 <0, K (E ) exhibits a sllght ‘dip’ at intermediate
and strong coupling strengths which is rcﬂectcd in a reduction of the total p~(J — 1)
admixture of the state.

3. Emission spectra
3.1. Spontaneous emission at zero temperature

The investigation of the vibronic eigenstates in the preceding paper revealed that at all
coupling strengths the lowest energy level is of type-I with j = 0 and either J = 0 or
J = 1. Spontaneous emission for 0 K can therefore occur only from one of these states.

The rate of spontaneous emission of light of energy ¢ and polarisation 7 resulting
from a transition from a (2J + 1)-fold degenerate state ‘P’;"j with energy &1, jJ) to the
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vibronic states V.., .. (Is) with energies e(N'J', Is) = — ¢, + 2N" + J' + 1 is then
given by (Dexter 1958, Fowler 1968, p 61)
c
i (1jJ, &) = — WMDY (1s)H]?
ln‘j Y 2J + ]M=J.J—Z‘.. ‘ ..JN'.{Z’M"< '-Jl ,,l N )|

x d(e(L,j)) — e(N'J", 1s) — &)

where C' = (F _ /F )2 4ne3/3h* 3, and nis the refractive index of the medium, ¢ the speed
of light in vacuum and (F_,/F,)* the local field correction. Furthermore, we ignore the
variation of C' over the energy range of the states ¥, ., (1s) to which the transitions
occur, on the assumption that the width of the emission band is small compared with
its mean energy.

The electric dipole moment operator D for linearly polarised light takes the form
D, = en with 7 = x, v, or z. Substituting its matrix elements (I16) into the expression
above leaves us with a sum over M(=J, J — 1, ..., —J) which can easily be carried out
since the energies in the delta functions do not dcpcnd on M. With the sums

VMU =M <U+M+00+1-M
_y s Mr U 2 41
L35 =) § J+ H)2J +3) e

. . IM o :
the emission spectrum from a general state ‘PU is then given by

IJ.e) = [eld,j. J — )|?o(e(l, jJ) — &(O(J — 1), 1s) — &)

+ Y (|6 J + 2N + DP + [e(J, ), J + 2N + 1D)|]

N=0

x Me(l, j,J) — e(N(J + 1), 1s) — ¢) (3)

where we put I¢ = 3i /C'D? for convenience. Note that ¢ = OforJ = 0 (see equation (18)).

The total probability per unit time of the emission of a photon of polarisation 5 is
found by integrating the spectrum (3) over the energy. Summing the result over all
polarisations yields

NGI = 5PL S e g+ 2N 4)

TrUJ] N=0

where 7 (jJ) and 7 (p) = (C 'D?)" ! are the radiative lifetimes of the state ‘P“.' and a
2p electronic state, respectively. (1/N) can be regarded as the normallsatlon constant
of the spectrum (3) (see Ham 1973, equation (5.8b)). As the admixture of the s-J states
is given by 3" [a|’, N represents the total p-admixture of the p(J + 1) and p~(J — 1)
states (see equation (I8)). In the case of zero coupling strength N will either be equal to
1 for a pure p state or equal to zero for an s state. In the strong-coupling limit the ener-
getically low-lying type-1 vibronic states have equal admixtures of 2s and 2p electronic
states, and in this case we find N = ], independent of the electronic 2s-2p spacing and
independent of j and J.

When we calculate the spontaneous emission spectrum at absolute zero from
equation (3), there are three possibilities. Either a type-I state with j = J = 0 1s lowest,
or a type-I state with j = 0, J = 1, or both. The first possibility occurs for é < 0 for all
coupling strengths, but for 4 > 0 only in the intermediate or strong coupling region.
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The (2N + 1)-phonon emission lines (N = 0, 1, 2,...) are then given by
M<(2N + 1) = |b(0,0,2N + 1)|*. (5)

Complementary to this, a type-I state with j = 0, J = 1 is lowest only for é > 0 and for
weaker coupling. The emission spectrum consists now of zero-phonon and (2N + 2)-
phonon lines (N = 0, 1, 2,...) which are given by

M<(0) = |c(1,0,0)]?
MS(2N + 2) = |[b(1,0,2N + 2)|* + [e(1,0,2N + 2)|°.

(6)

The third possibility occurs when the two lowest energy levels are accidentally degenerate
which can be the case only for ¢ > 0.

The emission spectra from the lowest type-I state with J = 0 have been drawn in the
case of electronic 2s-2p degeneracy (6 = 0) for various values of ¢ (figure 2). The
positions of the delta functions are given by ¢;, — (2N + 1) with & = (I, 00) + ¢, — 3.
where N = 0, 1, 2,..., ¢, is taken as a given constant and &(I, 00) is obtained from the
computations of I. The spectra have uniform spacings which are independent of ¢ (and
8). The total 2p admixtures N(00) have also been included and are given by the sums
of the strengths of all the delta functions of the spectra.
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Figure 2. Emission spectra at T = 0K for é = 0 versus ¢ — ¢, where ¢, = &(I, 00) + ¢, — 3.

The n-phonon line has the position ( — n). & (1, 00) and N(00) denote the energy and the total
2p admixtures respectively of the lowest type-I state with J = 0. (@) ¢, = 1,e(1,00) = —0.16,
N{00) = 043; (b) Eg = 4 ¢(l, 00) = — 3.42, N(00) = 0.49; (¢) g, = 16, e(I, 00) = — 15.48,
N(00) = 0.50.
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For weak coupling the overlap integrals between the type-l vibronic states with
j = J = 0and the states ¥, ., .(Is) with small N" are largest and the few-phonon lines
dominate. The emission spectra are then strongly affected by the kind of state which 1s
lowest at & = 0. As the coupling strength increases, the influence of the many-phonon
lines becomes appreciably prominent, as expected from the semiclassical theory of
Toyozawa and Inoue (1966), and the spectra resemble Poisson distributions.

3.2. Emission at finite temperature

For temperatures greater than zero the thermal average over the initial states from which
spontaneous emission occurs and which are each weighted with the customary Boltz-
mann factor has to be taken into account. There are now two contributions to the
spectrum, one of them comes from the type-I vibronic states with energies &1, jJ) the other
from the type-II states with energies ¢(II, NJ) (see paper I, §2.3). In analogy to (3) the
total emission spectrum is then given by

;:_T = (I_.r"A)[A[I; AD + A"I;‘ T.(II)] (7)
where 4 = A4 + A with
A, =Y (27 + 1)exp[ — &l,jJ)/B]
il
A, =Y (2 + 1)exp[ — e(ll, NJ)/B]

NI

and f = kT/hw. k is the Boltzmann constant and T the absolute temperature.
The contribution of the type-I states to the emission spectrum can then be calculated

by using the results of §3.1
IL ()= A" > (20 + 1)yexp[ — el )/ B jJ, €) (8)
i
where I¢(1jJ, ¢) is given by (3). Similarly, the contribution of the type-II states can be
obtained with the help of the matrix elements

CHMID, Wy, p(15)) = DMJ(J + 1)] 7126, 18, 0y y forJ = 1 9)

The energy difference between all the states involved in the contribution I7 _(Il) is thus
independent of N and J and given by &(II, NJ) — &NJ, Is) = ¢, — 6. This part of the
spectrum therefore consists only out of a single line with a position independent of
coupling strength and temperature. We find

I7 (1) = Ayt Y (2 + 1)exp[ — elll), NJ)/Blole, — & — &) = e, — d — &) (10)
NJ

According to (7) the strength of this line is given by A, which depends on ¢ and f but
not on ¢.. Using the general relation

1
Y a=—— (@a>1,x<0)
k=0 —4a

we find from (7)

4~ cxp[(0 = /B3 — exp(— 1/B)] (11)
1= 1= exp(— 2/B)][1 — exp(— /BT
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Figure 3. Emission spectra at finite temperatures
for p=kT/hw =1 1,2 (a) 6 =0, ¢5 =1, (b)
d=~3 8g=4,(c) 6=0, 5, =4, (d) o =3,
& = 4. The broadening parameter is given by
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At low temperatures A, is approximately given by 3 exp[(o — 3) 8]

The total emission spectrum (7) has been computed for several values of 0. ¢ and f§
(figure 3). To simulate experimental measurements the delta functions were replaced
by gaussians of areas 1. This imposes some requirements on the magnitude and width
of the gaussians. Denoting the strength and position of a delta function by M and L.
the corresponding gaussian then reads 2M cxp| — 2[(¢ — L)/H]*/H(2n)" ?| where H is
the width of the function. The factor 2/H(2n)' ? ensures that the integration over all ¢
yields M. However, the magnitude is in general altered by the same factor, unless we
choose H = 2/(2n)"'?. In the computation we put H = 0.5.

As the temperature increases, the spectra are smoothed and shift towards lower
energies. As ¢ increases, the areas under the bands become larger as well. The contribu-
tion of the type-II states increases with f and é but decreases for increasing ¢,. Note
that the structure of the bands (apart from the type-I1 peak) does not appear to depend
significantly on 0.

4. Emission and absorption lines in the strong-coupling limit
4.]. Vibronic eigenstates

For sufficiently strong coupling. i.c. when the conditions 2¢, > [d| and ¢ > 1 are
fulfilled, the lowest vibronic eigenstates are of type-I which have the general form (Ham
1973)

N J 1:2
Y (JM) = (2) "~Fl(q;[yJM.J.s> — (-——--—-—) UM, J — 1.p>

2] + 1

S+ ]
2o [JAM. 1. 2
+(2J+I) |JM.J + p)J (12)

where the states |[JM. L, ) are linear combinations of the products of the spherical
harmonics 7' and the electronic states | /] ). The radial function F (¢) fulfils the differential
equation

o° ¢ 5 JP+ J+ 1 \
(— R L N R z:)f,{ql =0. (13
2 e -

We introduce the function G () = ¢F (q). In order for the solutions to be regular, the
condition G (g = 0) = 0 has to be satisfied. If we limit ourselves to values of ¢ in the
vicinity of g, > 1, i.e. to energetically low-lying eigensolutions, and introduce the new
variable x = g — q,. equation (13) takes the form

(d3 JP+J + 1

e 4 Y — 2D T N =
gt X 2 % )G,m 0. (14)

G, (x)exists only in the interval —¢q, < x < «.Forg, > 1 it is at least for the low-lying
solutions a good approximation to extend this interval to — oo < x < . Equation (14)
then becomes the radial equation of the linear harmonic oscillator with the energy
eigenvalues

dljly=j+ ) —¢e, + U+ T+ 1)deg (15)
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and the normalised eigenfunctions

Gl(x) = (n'221) 1% exp( — .\'2_.-*’2)H.(_\'] (16)
with j, J =0,1,2,.... H (x) are the Hermite polynomials defined by Messiah (1969,
p 491). In partlcu]ar the ground state ] = 0 reads

Go(q — q,) = n M exp[ — (g — qo)z__f-"ll]. (17)

In equation (14) the term in J is a constant, and the functions G are therefore independent
of J.

4.2. Zero- and one-phonon lines of emission and absorption

With the explicit expressions for the vibronic type-I states given above we are now able
to calculate the zero- and one-phonon lines of emission and of absorption in the strong-
coupling limit. Emission and absorption involve again the vibronic states ‘¥ ., . (Is)
of (114) which arec now required as explicit functions of the polar coordinates (¢, 0, @).
Following Fliigge (1965) we find the wavefunctions of the 3D harmonic oscillator with
energies e = 2n + [ + 3 to

¥ (q.0.0)=C,q exp(—q°/2)F(—nl+ 2.q°)T0, @) (18)
where C  denotes the normalisation constant and " the spherical harmonics defined
by Mcssnah (1969, p 494). The confluent hypergeometric series F(a, f:z)isfora = —n
given by a polynomial of nth power

[(n + l)l—(ﬁ} :'_‘

[(n—s+ DB + s)s! (19)

F(=nB:z)= Y (= 1)
s=0

where the gamma function is defined by I'(x + 1) = x!, xe R. Forn = 0: F(0, f:z) = 1.

The transition matrix elements may be calculated in analogy to (116). The emission
spectrum at zero temperature occurs from a type-I state with j=J =M =0 and 1s
found from (3):

14100, ¢) = 4 5 X070 [P(e(1, 00) — &(N'1. 1s) — 2) (20)
where o

Xy a1 = ji @*fy - (@Fq) dg
and ’

fo @ =Cy . qexpl—q>/2F( = N, 3:q°).
Transitions occur only to the states (114) with J' = 1, and the spectrum consists purely of

odd-phonon lines.
For N’ = 0 the strength of the one-phonon line in the strong-coupling limit is then

given by
M (1) = Axo |* = (4/3m) exp( — 2 )\Z, | (21)

where we used g = 2¢, (see Ham 1973). Z denotes the definite integral

Z = j q* exp[ — q* + (2¢,)"*q] dq. (22)

0
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Introducing exp[(2z,)' ’q] = 2 ,[(2¢,)"/?q]"/t! the integration over g can be carried
out (Bronstein and Semcndjajcw 1967, p 350):

é 2r' (I_%_S)

[t is now convenient to introduce the error function defined by Gradshteyn and Ryzhik
(1965) as

f(x) 2 J:e (— %) dt ’ exp( = x?) Y 2xt!
rfix) = —— —_ R — - ) —
IR Qui2 PN Lo

where 2k + )!' =1 x 3 x 5 x ... x (2k + 1). Making use of the properties of the
gamma function, we arrive at

sci (D) = (1/6m)exp( — 2¢ J2m) e, + 1) expleg/2){1 + erfl(e5/2)"?]} + ¢;°]* (23)
since £, > | we may write in very good approximation erf[(¢/2) )'?] ~ 1 and find
M (1) = e, + 1) exp( — ¢g). (24)

Similarly, we can calculate the emission spectrum from the type-I state with j =0,
J =1, only. The transitions to the ground state (I14) with N = J* = 0 then define a
zero-phonon line, the strength of which is in the strong-coupling limit given by

M, (0) = 5[‘00'2 = (2/3m) exp( — 280)|zz|2 (25)
where

zZ, = J. gexp[ — ¢* + (286)1'24:}] dg (26)

0
can be calculated in the same way as above. We find
M:,(0) = (1/6m) exp(—2¢)|1 + Y2meg)" /2 expleg/2{1 + erf[(5/2) 2]} (27)
Again we put erf[{sc,f2]"'2] ~ 1 for e, > | and obtain
M (0) = leg, exp( — &g) (28)

The absorption lines from the ground state (114) with N’ = J' = 0 to the lowest-lying
type-I states of strong coupling can be calculated in a similar manner. Of course, the
(j = 0) absorption line is identical to the zero-phonon emission line. The strength of
the (j = 1) absorption line is defined by the transition probability to the type-I state
withj = J = 1 and found to be

M () = ﬂxclnolz

= (4/3m) exp( — 2e,)|Z, — (2,)'*Z,|? (29)
where Z , Z, are given by (22) and (26), respectively. We obtain

M2 (1) = (1/67) expl — 2¢4)[3(2m) *(e; — 1) expleg/2) {1 + erf((e,/2)'"%]} + &g *[*. (30)
With the strong-coupling condition ¢, > | this expression reduces to

(1) = Aeg — 1)? exp( — &) (31)

1/2

SCL

In figure 4 the expressions (23), (27), and (30) have been plotted against ¢;'° together
with the computed values for 6 = 0 of §3 and I4. Good agreement betwecn the lines
is found for intermediate and strong coupling.



Numerical investigation of the (s + p) & T, systems: Il. 695

R S

1!_,_\ e
| \.\.

Figure 4. A, strength of zero-phonon line: B, one-phonon emission line; and C (j = 1)
absorption line for & = 0 versus coupling strength ¢}'?. The exact lines have been plotted
together with the strong-coupling expressions (27) x, (23) O, and (30) +.

5. Conclusion

The numerical results presented in this and the preceding paper should prove useful in
the analysis of systems where 2s and 2p electronic states interact in cubic symmetry via
a triply degenerate odd-parity vibrational mode. As has been demonstrated for the relaxed
excited state of the F centre in alkali halides (Ham and Grevsmiihl 1973, Kayanuma
1976, Grevsmiihl 1976, Imanaka et al 1977, Thomchick and Ham 1980), the coupling
of such systems may be found in the weak or intermediate region. Recently, Pooler
(1980) has calculated by means of an analytical method some of the properties of the
vibronic eigenstates in strong coupling such as reduction factors and radiative lifetimes
of the low-lying states. Our numerical studies are in excellent agreement with his results
and provide the link to both weak and strong coupling expressions.
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